Are you here to get FREE answers key for Polarity and Intermolecular Forces Gizmo questions?
If YES, check below for the right solutions…
- Polarity and Intermolecular Forces Gizmo Answer Key (Student Exploration)
- Polarity and Inter-molecular Forces Prior Knowledge Questions & Answers
- Polarity and Inter-molecular Forces Warm-Up Questions & Answers
- Polarity and Inter-molecular Forces Gizmo Answers – Activity A
- Polarity and Intermolecular Forces Gizmo Answers – Activity B
- Polarity and Intermolecular Forces Gizmo Answers – Activity C
- About Polarity and Intermolecular Forces
Polarity and Intermolecular Forces Gizmo Answer Key (Student Exploration)
NOTE: All answers are checked twice before publishing them to you. So, please share if it helps you.
Vocabulary: dipole, dipole-dipole force, dipole-induced dipole force, electronegativity, intermolecular force, ionic bond, London dispersion force, molecule, nonpolar, nonpolar covalent bond, partial charges, polar, polar covalent bond, valence electron.
Polarity and Inter-molecular Forces Prior Knowledge Questions & Answers
[Note: The purpose of these questions is to activate prior knowledge and get students thinking. Students are not expected to know the answers to the Prior Knowledge Questions.]
Q.1. A big bully is having a tug-of-war with a small child. There is a ball attached to the middle of the. Toward whom will the ball move?
Ans: The big bully.
Q.2. Two equally strong kids are having a tug-of-war. What do you expect to happen to the ball in this situation?
Ans: The ball will stay in the middle, halfway between them.
Polarity and Inter-molecular Forces Warm-Up Questions & Answers
Just like in a tug-of-war, atoms that are bonded to one another pull on the electrons they share. In the Polarity and Intermolecular Forces Gizmo, you will explore how these opposing forces relate to bond types and the forces between molecules.
To begin, drag the Na (sodium) and Cl (chlorine) atoms into the simulation area. Turn on Show valence electrons. A valence electron is found in the outermost energy level of the atom.
Q.1. Click Play (). What do you notice?
Ans: The Na atom shrinks and the Cl atom expands. The orange valence electron moves from the Na atom to the Cl atom.
Q.2. Which atom seems to be pulling more on sodium’s one valence electron?… Ans: The Cl atom. How do you know?… Ans: The chlorine atom wins the “tug of war” for the valence electron.
Q.3. What happens to the colors of the simulated atoms, and what does this indicate?
Ans: The Na atom turns blue, indicating a positive charge. The Cl atom turns red, indicating a negative charge.
Polarity and Inter-molecular Forces Gizmo Answers – Activity A
Introduction: A neutral atom has the same number of protons as electrons. Atoms that gain electrons become negatively charged, while those that lose electrons become positive. A polar bond forms when shared electrons are pulled closer to one atom than another, causing the bonded atoms to become partially charged. In a nonpolar bond, electrons are shared equally.
Question: What causes bonds to be polar or nonpolar?
Q.1. Observe: Select the Show polar molecule inset checkbox. The animation shows the probable location of electrons (orange dots) in a polar molecule.
A. What do you notice about the distribution of the electrons?… Ans: There are more electrons on the left side than on the right.
B. How does this electron distribution affect the charges of the bonded atoms?… Ans: The left atom has more electrons and a negative charge. The right atom is positive.
Q.2. Observe: Turn on the Show nonpolar molecule inset.
A. How are the electrons in this molecule distributed?… Ans: The electrons are evenly distributed between the two atoms.
B. Why do the bonded atoms remain neutral?… Ans: Overall, neither atom has gained or lost electrons.
Q.3. Experiment: Turn off Show polar molecule inset and Show nonpolar molecule inset. Check that Show valence electrons are turned on. Drag the Na and Cl atoms into the simulation area. Click Play. Note the colors. Red indicates a negative charge, while blue indicates a positive charge.
A. Does a polar or nonpolar bond form?… Ans: A polar bond.
B. Try several other metal/nonmetal combinations. What do you notice about the bonds that form?… Ans: Electrons are transferred from the metal to the nonmetal atom.
Q. 4. Experiment: Now try forming bonds between different combinations of nonmetals.
A. What do you notice?… Ans: One or more pairs of electrons are shared between the two atoms. In some cases, the shared electrons are closer to one atom than to another.
B. Are all of these bonds polar? Explain… Ans: Some of the bonds are polar, and some are nonpolar. For the nonpolar bonds, the shared electrons are halfway between the bonded atoms.
C. Which nonmetal appears to attract electrons the most? Ans: Oxygen.
Q.5. Experiment: Turn on Show electronegativity. Electronegativity (EN) describes how strongly an atom attracts a pair of shared electrons. The higher the EN value, the greater the tendency of an atom to hold onto electrons in a bond and become negatively charged. Electronegativity difference is found by subtracting the EN value of one atom from another. Choose two nonmetals with a small (or no) EN difference between them. Click Play. What happens to the shared electrons in this bond?
Ans: In this bond, the shared electrons are halfway between the two bonding atoms. When the shared electrons experience the same attraction from each atom, the result is a nonpolar covalent bond. Drag the bonded atoms to the Nonpolar covalent bond bin.
Q.6. Experiment: Choose two nonmetals with a large electronegativity difference. Click Play. What happens to the valence electrons in this bond?
Ans: In this bond, the shared electrons are pulled closer to the more electronegative atom. A bond in which the electrons are shared unequally is a polar covalent bond. Notice the small δ+ and δ– symbols, which indicate partial charges. Drag the resulting combination to the Polar covalent bond bin.
Q.7. Classify: Use the Gizmo to categorize the remaining element combinations as forming either ionic, polar covalent, or nonpolar covalent bonds. List your results below.
- Ionic (EN difference > 1.67) Ans: CaO, Na2O, CaCl2, MgCl2, KCl, K2O, NaCl, MgO
- Polar covalent (EN diff. < 1.67 and > 0.40) Ans: CO2, NH3, CCl4, H2O, OCl2, CO
- Nonpolar covalent (EN difference < 0.40) Ans: NCl3, O2, CH4, N2, Cl2, H2
Polarity and Intermolecular Forces Gizmo Answers – Activity B
Introduction: Ionic bonds, like those found in NaCl, form crystalline solids. Covalent bonds, on the other hand, usually form discrete molecules. A polar molecule, while neutral overall, has a slight positive charge on one end and a slight negative charge on the other.
Question: What determines the polarity of molecules?
Q.1. Observe: Notice that the molecules containing polar covalent bonds are grouped together at the lower left, and the molecules containing nonpolar covalent bonds are at the lower right. Drag the H2O molecule into the simulation area.
A. Are the individual bonds in this molecule polar or nonpolar?… Ans: Polar
B. Click Turn on the electric field. What do you notice?… Ans: The H2O molecule
C. The electric field consists of a positively charged plate on one side and a negatively charged plate on the opposite side. Which side of the H2O molecule is attracted to the positive plate, and why do you think this attraction occurs?… Ans: The O atom is attracted to the positive plate because the O atom has a partial negative charge. [The two H atoms are attracted to the negative plate because they have partial positive charges.]
D. Click Reverse field. Why does the H2O molecule rotate 180°?… Ans: The H2O molecule rotates because the positive plate is now on the other side. A polar molecule, such as H2O, changes its orientation when placed in an electric field. The positive end of the molecule is attracted to the negative plate, while the negative end is attracted to the positive plate. Drag this molecule into the Polar bin.
Q.2. Observe: Drag the CH4 molecule into the simulation
A. Do you think this molecule will rotate in the electric field? Why or why not?… Ans: Correct answers will vary. [The CH4 molecule contains nonpolar bonds, so most students would predict that this molecule will not rotate.]
B. Turn on the electric Is this molecule polar or nonpolar?… Ans: Nonpolar. Drag the CH4 molecule into the appropriate bin.
Q.3. Classify: With the Gizmo, test and categorize the remaining molecules. Report your findings.
- Polar molecules… Ans: H2O, NCl3, CO, OCl2, NH3
- Nonpolar molecules… Ans: CH4, O2, H2, Cl2, N2, CCl4, CO2
- Did the polarity of any of these molecules surprise you? Explain… Ans: Answers will vary. [Students may be surprised that NCl3 is polar because it contains nonpolar bonds. Students may be surprised that CCl4 and CO2 are nonpolar despite containing polar bonds.]
Q.4. Explain: Drag the CCl4 molecule into the simulation area.
A. Does this molecule contain polar or nonpolar bonds?… Ans: Polar
B. Turn on the electric field. Why do you think the molecule does not rotate in this field?… Ans: Answers will vary. The molecule does not rotate because it is nonpolar. The bonds are symmetrically arranged, so the effects of the partial charges from the polar bonds cancel out. If a molecule is symmetrical, the effect of the partial charges on either side cancels out. In this case, even though it contains polar bonds, the molecule as a whole may be nonpolar.
C. What other nonpolar molecule contains polar bonds?… Ans: CO2 (carbon dioxide)
Q.5. Challenge: Find an example of a polar molecule that contains nonpolar bonds. Drag this molecule into the simulation area.
A. Which molecule did you select?… Ans: NCl3
B. Turn on Show valence electrons. What do you notice at the very top of the nitrogen atom, and how does this feature explain why the molecule is polar?… Ans: Evaluate all student explanations. There is a pair of unshared valence electrons at the top of the nitrogen atom. These electrons give this part of the nitrogen atom a partial negative charge. For the NH3 molecule, the lone pair of valence electrons shown at the top spread out, bending the chlorine atoms downward due to electron repulsion. As a result, the molecule is slightly polar.
Polarity and Intermolecular Forces Gizmo Answers – Activity C
Introduction: The polarity of molecules gives rise to the forces that act between them. These intermolecular forces, or IMFs, affect many physical properties including boiling point, solubility, viscosity, and surface tension.
Question: How does polarity affect the forces between molecules?
Q.1. Observe: Select the Show polar molecules to inset What do you notice?
Ans: A bond forms between the positive end of one molecule and the negative end of the other. Each polar molecule is known as a dipole. The attraction between the positive end of one dipole and the negative end of another is called a dipole-dipole force.
Q.2. Observe: Turn on the Show nonpolar molecules inset. What do you notice?
Ans: The nonpolar molecules become momentarily polar and a bond forms between the temporarily positive end of one molecule and the temporarily negative end of the other. Even when the molecules are nonpolar, random variations in the distribution of electrons can cause parts of these molecules to become slightly charged. This imbalance leads to very tiny, short-lived attractions between molecules called London dispersion forces.
Q.3. Experiment: Turn off Show polar molecule inset and Show the nonpolar molecule inset. Drag two H2O molecules into the simulation area, and click Play. Click the Pause button when you see a bond form between molecules. Sketch the molecules, partial charges, and the bond between them in the space to the right. Why is a hydrogen atom in one H2O molecule attracted to the oxygen atom in an adjacent H2O molecule?
Ans: The hydrogen atom has a partial positive charge, so it is attracted to the partially negatively charged oxygen atom on the adjacent H2O molecule. Drag the H2O-H2O molecule combination into the correct bin on the right. Which type of intermolecular force causes attraction between H2O molecules? A dipole-dipole force.
Q.4 Experiment: Drag two O2 molecules into the simulation area, but do not click Play
- A. What force do you expect to see between O2 molecules?… Ans: Predictions will vary.
- B. Click Play and observe. What do you notice?… Ans: Even though O2 molecules are nonpolar, as they interact they can become temporarily polar and for.
- C. Which force causes attraction between O2 molecules?… Ans: The London dispersion force.
Q.5 Experiment: Drag an O2 molecule and an H2O molecule into the simulation area. Click Play, and then click Pause when you see a bond
- A. What happens to the end of the O2 molecule that is closest to the positive end of the H2O molecule?… Ans: This end of the O2 molecule gains a partial negative.
- B. As the bond forms, does the polarity of the O2 molecule change?… Ans: Yes
- C. Classify this combination of molecules. (It might take a few tries to get it right.) Which type of intermolecular force is acting here?… Ans: A dipole-induced dipole.
Q.6. Classify: Drag out different combinations of molecules in the Gizmo and categorize them. Give at least three examples of molecule combinations for each intermolecular force.
- Dipole-dipole forces… Ans: H2O-H2O, CO-NH3, etc (Any combination of polar molecules)
- Dipole-induced dipole forces… Ans: H2O-O2, CO-Cl2, etc (Any combination of polar and nonpolar molecules)
- London dispersion forces… Ans: H2-H2, CO2-H2, etc (Any combination of nonpolar molecules)
Q.7. Summarize: Fill in the blanks to summarize the patterns you
Ans:
Dipole-dipole forces arise between polar molecules.
London dispersion forces arise between nonpolar molecules.
Dipole-induced dipole forces arise between polar and nonpolar molecules.
Above are the correct answers for the Gizmo topic “Polarity and Intermolecular Forces“. Now let us explain about Polarity and Intermolecular Forces in the coming session.
Or would you like to explore other topics associated with Gizmos? >>Get all other Gizmos Answer Key<<
About Polarity and Intermolecular Forces
Polarity is a phenomenon where molecules or ions with partially positive and negative charges are attracted to each other. It is also the principle of how different substances interact with each other. Many different types of polarity exist such as polar covalent, polar ionic, hydrogen bonding, and dipole-dipole interactions. All of these are forms of intermolecular forces that occur when certain conditions are present between molecules over which they share electrons.
An intermolecular force is a physical interaction between two separate molecules. They are weaker than intramolecular forces, which hold together an individual molecule. Intermolecular forces cause substances to have different boiling points, melting points, vapor pressures, and solubilities. There are four main types of intermolecular forces: hydrogen bonding, dispersion forces, dipole-dipole forces, and ionic interactions.
Thank you for reading! we hope the summary has provided you with some useful information about Polarity and Intermolecular Forces that may help in answering the above questions as well.
More References:
=> https://en.wikipedia.org/wiki/Chemical_polarity
=> https://www.sciencedirect.com/topics/chemistry/intermolecular-force
Hope you find the Gizmo Polarity and Intermolecular Forces Answer Key for levels A, B, & C by following our answers above. Share with your batchmates if you find it helpful.
Hi, I’m Thomas, and I’ve been a teacher for over 10 years and have taught students at all levels. I created this blog to really help students get ahead of their exams as well as provide helpful guides on various courses.